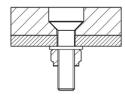
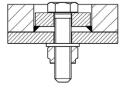
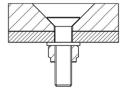


New innovative LV Sleeve for heavy-duty fastening

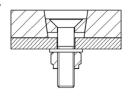



LV Sleeve

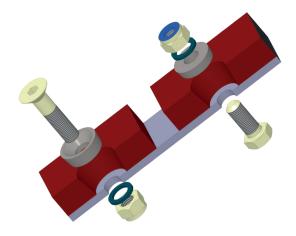
The LV sleeve solves your fastening challenges, especially with parts made of wear-resistant steel.


The fastening points of wear-resistant steel typically have machined embedding. It poses challenges for the manufacturer, though. The harder the wear-resistant steel material, the more challenging it is to work on it.

A welded washer is also a typical fastening method. Welding, however, is more demanding when the materials are harder.



Fastening points have also been implemented by angle cutting directly into the countersink board. Yet, as the performance level increases, this method becomes a slow and expensive option.


LV Sleeve solves these challenges. By water jet cutting the finished taper bolt hole into the wear-resistant steel, you can use the LV Sleeve directly in the water-jet hole.

The LV Sleeve we have developed is utility model protected. With the LV Sleeve, you can use even harder materials cost-effectively, regardless of material strength.

The sleeve itself is not wear-resistant, as it is located under the bolt head, just like when using other fastening methods.

Furthermore, the cutting is significantly faster and does not require finishing, as the part is ready for use with the sleeve right after cutting.

The sleeve can also be implemented as a threaded version. That way, it is possible to make pieces that fasten on the other side. We stock sleeves for typical standard-size fixing bolts, which enables fast product deliveries.

LV sleeve items:

- LV (bolt size) e.g.:
- LVM12 = M12 flathead for bolts with taper hole
- LVS (bolt size) e.g.:

LVSM20 = M20 sleeve with a straight hole

We have conducted versatile use testing with LV sleeves in cooperation with the Lapland University of Applied Sciences:

- Comparison of cutting forces
- Tensile strength
- Effects of vibration on the sleeve

Testing in cooperation with the Lapland UAS Research, Development and Innovation and the Materials and Mechanical Engineering Research Unit of the University of Oulu

Lave Oy (Lapin Vesileikkaus)

Nauskankatu 2 | 94600 Kemi Tel. 040 684 0311 info@lave.fi | www.lapinvesileikkaus.fi We serve on weekdays from 8:00 a.m. to 4:00 p.m.

Download our contact information

Follow us on Facebook facebook.com/lapinvesileikkaus

